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Jean-Marc Berthommé1, Thierry Chateau1 and Michel Dhome1
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Abstract: This paper presents a novel method of selecting kernels for the subsampling of nonparametric models used in
real-time object tracking in a video stream. We propose a method based on mutual information, inspired by
the CMIM algorithm (Fleuret, 2004) for the selection of binary features. This builds, incrementally, a model
of appearance of the object to follow, consisting of representative and independant kernels taken from points
of that object. Experiments show gains, in terms of accuracy, compared to other sampling strategies.

1 INTRODUCTION

Object tracking in a sequence of images is a re-
search area particularly explored whose benefits in the
applications are very numerous, going from video-
surveillance to Human/Machine interfaces.

Many methods of object tracking by vision are
based on the construction of a model from an initial-
ization of the object’s position on the first frame of
the sequence. Then the only available model is the
appearance of this object in this frame. So to follow
it, this is to look in the next frame, and in its neigh-
borhood, an area whose appearance is closer to that
model.

This modeling is called nonparametric because it
makes no assumption about the data distribution. It
just links the observations without using an underly-
ing representation. This avoids having to explain the
structure of the model even if we should now discern
the observations of the object. Nonparametric esti-
mation is largely based on the use of kernel functions
whose bandwidth is critical. To adapt to local den-
sities, Sylvain Boltz (Boltz et al., 2009) used the k-
nearest neighbors (k-NN) instead of the Parzen win-
dows (Parzen, 1962) and showed how to estimate the
Kullback-Leibler divergence within this framework.
In object tracking he made the connection with Mean-
Shift, whose k-NN generalize the case of a number of
points fixed inside the point cloud. This algorithm,
described in 1975 by Fukunaga and Hostetler (Fuku-
naga and Hostetler, 1975), was revived in 2000 by Co-
maniciu and Meer (Comaniciu et al., 2000).

But k-NN sin by their computational complexity.

For two populations of n and m points in dimension
d, we have to make O(nmd) calculations to get the
distances and O(nmlogm) to sort them. Garcia et
al. (Garcia et al., 2008) have shown that GPU paral-
lelization pushed the limit and was better than approx-
imate k-NN. This technical resolution of the problem
is not challenged here. We only seek to reduce ”up-
stream” the number of points of the model.

For this we propose an original algorithm based
on information theory to select representative and in-
dependant kernels. Once the model is built, the track-
ing is performed by a sequential particle filter whose
observation function uses an approximation of the
Kullback-Leibler divergence by the k-nearest neigh-
bors.

The article is divided into four parts. After this in-
troduction, the second part describes the principle of
model construction and tracking. The third presents
experiments on real data, to evaluate the proposed
method compared to other sampling strategies. Fi-
nally, the last concludes and offers some prospects of
this work.

2 METHOD

This section describes the principle of the track-
ing algorithm in two steps: 1) construct the object
model with the CMIM (Conditional Mutual Infor-
mation Maximization) algorithm and 2) track the ob-
ject in a sequence with a sequential MCMC (Markov
Chain Monte Carlo) particle filter.



The initialization takes place in the first frame.
The method is assumed to access to the Region of
Interest (ROI) containing the cropped portion of the
object to follow. The labelling of the pixels, from the
object or its neighborhood, is binary (0/1) and is the a
priori to start. The image labels are noted Y . Figure 1
shows an example of appearance to track, to the left,
and the map of the associated labels, to the right.

Figure 1: Labelling of the object of interest. To the left:
image of the object to track. To the right: labels image.

2.1 Kernel Generation and
Optimization

The aim is to select certain points and kernels associ-
ated with the object to track. For this we draw M pix-
els xm(um,vm) at random from the ROI. Each point is
coded as a vector of dimension 5: U,V,R,G,B where
U,V are the coordinates of a system linked to the ROI
and RGB the red, green, blue coding colors of that
pixel. For each one we build nine kernels in the D di-
mensions as follows: R, G, B, UV R, UV G, UV B, UV ,
RGB and UV RGB. Each dimension is normalized by
its maximum amplitude, from 0 to 255 for color (8
bits), 1 to w for the width and 1 to h for the height.
Color C includes the channels R, G, B. Then, 9 nor-
malized Euclidean distances are calculated for each
pixel x(u,v) of the ROI from each extracted pixel xm:

dC(x,xm) =

(
C(u,v)−C(um,vm)

255

)2

dUV (x,xm) = 1/2

{(
u−um

w−1

)2

+

(
v− vm

h−1

)2
}

dUVC(x,xm) = 1/2{dUV (x,xm)+dC(x,xm)}
dRGB(x,xm) = 1/3{dR(x,xm)+dG(x,xm)+ ...

dB(x,xm)}
dUV RGB(x,xm) = 1/2{dUV (x,xm)+dRGB(x,xm)}

For each distance, we define a probability to be-
long to the object or not by plating a Gaussian kernel
K. This step introduces a parameter λ, related to the
kernel bandwidth, which spreads more or less the dis-
tribution around xm. At this stage, no normalization is

performed to remain homogeneous with the Boolean
labels. However, round to a normalization, the no-
tions of kernel and distribution remain valid. Thus:

P[x ∈ Ob ject] = KD,λ,xm(x) with :

KD,λ,xm(x) =
{

e−λ.dD(x,xm) if Y (xm) = 1
1− e−λ.dD(x,xm) if Y (xm) = 0

Subsequently, there is X the map of probabilities
of the pixels associated with the kernel KD,λ,xm . Fig-
ure 2 shows the influence of λ on two maps from the
same kernel based on a pixel xm in dimension UV .

Figure 2: Map of probabilities X of the kernel KUV,λ,xm for
λ = 50 left and λ = 250 right. xm = [8,22].

The parameter λ is very important in the coding
of the model. We propose to optimize it by maximiz-
ing the amount of information exchanged between the
probability map X and the labels Y . For this we eval-
uate their mutual information I (MacKay, 2003):

I(X ;Y ) = H(X)+H(Y )−H(X ,Y )

The entropy H(X) is based on pX , the average of
the probabilities of X . So, in bits:

H(X) =−pX log2 pX − (1− pX ) log2 (1− pX )

The entropy H(Y ) of the binary labels relies on
the count of 0 and 1 in Y leading to the average prob-
abilities p0 and p1 (p0 + p1 = 1):

H(Y ) =−p0 log2 p0− p1 log2 p1

Joint entropy H(X ,Y ) is equivalent to count the
states 00, 01, 10 and 11. There are several ways to
do but the fastest is to separate the probabilities of X
according to their label to look at the probabilities of
each set. With the convention p01 = p(Y=0)∩(X=1) we
have:

p00 = (1− pY ) (1− pX |Y=0)
p01 = (1− pY ) pX |Y=0
p10 = pY (1− pX |Y=1)
p11 = pY pX |Y=1

H(X ,Y ) =−∑i∈{00,01,10,11} pi log2 pi

The optimization of I via, for example, the
Levenberg-Marquardt method quickly converges to a
solution λ∗. We do not detail it and simply present a
possible evolution of I depending on λ in Figure 3.
Note that I is bounded by the entropy of the labels



Figure 3: Kernel bandwidth optimization by maximizing
the mutual information with the labels Y . I = f (λ) with
λ = 10k where k = [-2, 5].

H(Y ) in red.

Figure 4 shows the evolution of X from white to
black depending on the kernel bandwidth λ. When
λ becomes small the map of probabilities becomes all
white ( lim

λ→0+
e−λ.d = 1) and the information exchanged

with the labels null. Similarly, when λ becomes large
the probability map is all black ( lim

λ→+∞

e−λ.d = 0) and

mutual information with the labels null again. Be-
tween the two there is a λ∗ solution as 0 ≤ I(λ∗) ≤
H(Y ).

Y

10X 100X1X

Figure 4: Illustration of the evolution of the map of proba-
bilities X based on the kernel bandwidth. Y vs X for λ = {1,
10, 100}

2.2 Kernel Selection

At this stage, N = 9M kernels, optimal in the sense
of parameter λ, were generated. The selection phase
is to choose K kernels with K � N. The goal is to
have a set as small and as representative as possible
of the labels Y of the ROI of the first image. For
this we propose a method derived from the CMIM al-
gorithm (Conditional Mutual Information Maximiza-

tion) (Fleuret, 2004) with a novelty that is to com-
pare booleans with probabilities and not with other
booleans.

CMIM is an incremental algorithm based on the
MinMax principle. At each step it looks for the el-
ement the most characteristic of labels knowing all
what has already been explained. The first loop ini-
tializes a score s[n] (where n ∈ [1,N]) for each ker-
nel Xn that corresponds to the mutual information ex-
changed with the labels Y : I(Y ;Xn). The kernel which
has the highest score wins and its index n is stored at
position ν[1].

In the following loop, we calculate the conditional
mutual informations between the kernels Xn and Y
knowing Xν[1] just selected: I(Y ;Xn|Xν[1]). Scores
s[n] are then updated by retaining the minimum of
I(Y ;Xn) and I(Y ;Xn|Xν[1]), i.e. between s[n] and
I(Y ;Xn|Xν[k]) for iteration k in the general case. This
induces a selection of kernels as independent as
possible. The new kernel with the maximum score
is drawn to store its index in ν[k]. It loops back. At
the end all the indices of the K selected kernels are
recovered in ν.

for n=1...N do
s[n]← I(Y ;Xn)

end
for k=1...K do

ν[k] = arg maxn s[n]
for n=1...N do

s[n]← min{s[n], I(Y ;Xn|Xν[k])}
end

end
Algorithm 1: CMIM algorithm

We can accelerate this algorithm by stopping the
calculation of the scores after a certain threshold due
to their decline. For more details we refer to the orig-
inal paper (Fleuret, 2004). What interests us most
is to show how to calculate I(Y ;Xn|Xm) when Y is
a binary image and Xn and Xm probabilities maps
(n,m ∈ [1,N]). According to (MacKay, 2003) :

I(Y ;Xn|Xm) =H(Y,Xm)−H(Xm)

−H(Y,Xn,Xm)+H(Xn,Xm)

H(Y,Xm) and H(Xm) are calculated as above with
I(X ;Y ). The following two terms are more subtle.
Let’s start with H(Xn,Xm) in the simple case where
Xn and Xm have one element. It comes down to joint
entropy of two Boolean random variables with known
occurrences pn and pm (pn means P(Xn = 1)) but hid-
den realizations. On these latter, an optimistic a priori
is set. Xn and Xm are assumed to get as much informa-
tion as possible together. For instance, if pn = 0.8 and



pm = 0.7 then p(Xn=1)∩(Xm=1) = min(pn, pm) = 0.7.
This exchange of information can be represented by
an oriented noisy channel (H(Xn) ≤ H(Xn)) as fol-
lows:

1− pn 0

��========
1− f01 // 0 1− pm

pn 1

@@��������

1− f10

// 1 pm

The error rates f01 and f10 match to the percent-
ages of 0 turned into 1 and 1 into 0. The optimistic ap-
proach assumes they are minimum and so it saturates
the horizontal transitions (arrows) at the expense of
the diagonals. A pessimistic approach would do ex-
actly the opposite. The evaluation of the probabilities
of the states 00, 01, 10 and 11 is then as follows:

p11 = min( pn, pm)
p00 = min(1− pn, 1− pm){

p10 = 0 et p01 = 1− p00− p11 if p11 = pn
p01 = 0 et p10 = 1− p00− p11 if p11 = pm

In the case, more common, where Xn and Xm have
several elements, this operation is repeated for each
pair of values. Then probabilities are averaged along
the states 00, 01, 10 and 11. The total joint entropy is
then:

H(Xn,Xm) =−∑i∈{00,01,10,11} pi log2 pi

The calculation of H(Y,Xn,Xm) is close to that
of H(Xn,Xm) since Y has only two exclusive states:
0 and 1. Let’s first consider a triplet of scalars
(Y,Xn,Xm). We write p4 = [p00, p01, p10, p11], the
probabilities associated with Xn and Xm, calcu-
lated exactly as above. The probabilities of the
triplet are also gathered together into a single vector
p8 = [p000, p001, p010, p011, p100, p101, p110, p111], fol-
lowing the convention p101 = p(Y=1)∩(Xn=0)∩(Xm=1).
They comply with the following rule:

p8 =

{
[p4,0,0,0,0] if Y = 0
[0,0,0,0, p4] if Y = 1

In the case that Y , Xn and Xm have several items
this operation is repeated for each triplet. Then, the
probabilities of the 8 states 000, 001, ... 111 are still
averaged over each one to get the overall entropy:

H(Y,Xn,Xm) =−∑i∈{000,001,...,111} pi log2 pi

These calculations maintain the following proper-
ties:

H(X ,X) = H(X)

H(Y,X ,X) = H(Y,X)

I(Y ;X |X) = 0

Figure 5 shows an example of the selection of five
kernels by CMIM based on Figure 1:

Figure 5: Selection of 5 kernels by CMIM.

2.3 k-NN MCMC Tracking

Tracking a ROI, reflection of the object in the im-
age, couples equal radiometric (color RGB) and ge-
ometric (position UV) information. The goal is
to find in each new image the closest ROI to the
original. Information is normalized by dimension
and weighted on UVRGB by the respective weights
[1/4, 1/4, 1/6, 1/6, 1/6]. After each image can be
viewed as a probability density function (PDF) and
compared with another one by a similarity measure,
namely the Kullback-Leibler divergence. Boltz et
al. (Boltz et al., 2009) (Boltz, 2008) showed how to
estimate it in a k-NN framework and why it is well
aware of the local densities in high dimensions.

For a reference population R of nR points in di-
mension d and a target population T of nT points in
the same dimension (nR 6= nT a priori), with ρk(U,s),
the Euclidean distance between the point s and its kth

nearest neighbor in U (U ≡ R or T ), the Kullback-
Leibler divergence DKL(T,R) can be estimated, in an
unbiased way, by:

DKL(T,R)
k-NN
= log

nR

nT −1
+

d
nT

∑
s∈T

log
ρk(R,s)
ρk(T,s)

An ideal estimation would consider all the pix-
els in R and T . However, to avoid the combinato-
rial explosion or just speed up the calculations, we try
to downsample these regions. The question is how.
Subsequently we will compare three types of sub-
samples: two regular, one random and one from the
kernels selected by CMIM.

Trackings use a sequential particle filter (Arulam-
palam et al., 2002) with a Markov chain (Khan et al.,
2005). Each particle represents a region of the im-
age. The upper left corner of the reference ROI R
indicates the first position. From the second we ap-
ply Np random transformations ϕi to R. It gener-
ates Np particles or ROI targets Ti whose weight is:
wi = e−µ.DKL(Ti,R) with µ a fixed constant. The particle
with the maximum weight takes on the new position.
The others are not forgotten. They will generate new
particles in the subsequent iterations. The repoduc-
tion chance is governed by the Metropolis-Hastings
rule: min(1,wnew/w∗)< rand(). Few particles of low
weight are also ”burned” at each iteration.



Finally we will make big assumptions: that the
reference R does not change, that the object is far from
the camera and therefore that the ROI does undergo
only translations and remains fixed size.

3 EXPERIMENTS

Evaluations show how the selection of kernels is
better than a regular or random subsampling in terms
of filtering for an equivalent tracking performance.

3.1 Evaluation

All experiments are based on a video of the CAVIAR
database (see acknowledgements). A manual track-
ing of targets gave the ground truth GT . On this same
sequence the particle filter has been launched in dif-
ferent configurations. For each track of the algorithm,
its truth AT was recorded. Thus AT and GT contain
series of ROI indexed by frame number.

ROIAT
ROI

GT

AAT GT

U

Figure 6: Intersection area AAT∩GT of the ROI of the algo-
rithm AT and of the ground truth GT in the same image.

To determine the quality η of a tracking we com-
pare the ROIs of AT and GT by pair in each image
i. We calculate their reports of intersection area and
union and check whether for a given tolerance τ it
makes ”fit” the tracked ROIs to the ground or not.
This state, good or not, is rated β. Then for Ni im-
ages:

βi(τ) =

{
1 if A i

AT∩GT
A i

AT∪GT
≥ τ

0 else

η(τ) =
1
Ni

Ni

∑
i=1

βi(τ)

Note that since the particle filter involves ran-
dom numbers, each curve indicating a configuration
is based on ten trials. The average case was drawn
in solid lines and the worst and best cases in dashed
lines. Then the configurations are compared accord-
ing to the quality of their tracking and the number of
points extracted by their subsampling, that refers to
a percentage of extraction because of the size of the
ROI.

Four significant subsamplings are presented here
among all those tested: regular on raw data (”Raw”),

regular on data smoothed by a Gaussian kernel
(”Gauss”), random on data averaged per Voronoi cell
(”RandVor”), and finally from the convolution of ker-
nels selected by CMIM with optimized bandwidth
(”KerOpt”).

A regular subsampling involves taking a pixel of
2, 3, etc. following U and V. We note that a pixel of
1 leads to exhaustive sampling without loss. The size
of an average or Gaussian kernel is directly related
to the sampling period. So for a pixel of p it is sim-
ply smoothed by a kernel of size [p×p]. In the case
of random subsampling ”RandVor”, the Voronoi cells
are defined by all the pixels which are closest to a site
as defined in the standard l2-norm. These sites match
to pixels randomly selected in the ROI.

Note that each subsampling is frozen all along a
follow-up. Even if it is random, it is instantiated in the
first ROI and stored for the whole sequence. It applies
both to the reference ROI as to the ROI target. The
similarity measure employed is the Kullback-Leibler
divergence. It allows to compare sets of different sizes
which is useful when the ROI reaches the edge of the
image.

3.2 Results

Results are based on the sequence ”Walk-
ByShop1cor” of CAVIAR between images 192
and 309. We tried to follow the head of a man on
a window of size 31× 25 pixels. The curves show
the variation of good tracking η depending on the
tolerance τ on the percentage of area common with
the ground truth. The four curves in green, khaki,
brown and red in Figure 8 represent subsamplings
of a pixel of 1, 4, 7 and 10 i.e.: 775, 56, 20 and
12 points for the configurations ”Raw”, ”Gauss”
and ”RandVor”, from top to bottom. Down on the
same figure, the three curves gray, violet and cherry
compile the ”KerOpt” configuration for respectively:
55, 30 and 5 points filtered from the selected kernels.

3.3 Analysis

It is easy to see that the more there are points in the
model and the more the tracking is good as indicated
by the shades of green curves ”above” the red ones.
However getting more points drives to more expen-
sive calculations as mentioned in the introduction. We
also see that all configurations are struggling to cross
the milestone of 90% of good tracking (horizontal
asymptote for ”Raw”). Indeed, at the end of the se-
quence, the filter astrayed when the man came out
of the stage, leaving little relevant points in the final
good ROI (see Figure 7).



The case ”Gauss” also reveals an interesting point.
One might expect that the exhaustive sampling in
green (N = 775 with 1 pixel of 1 and thus a useless
convolution of [1×1]) would have lead to the best
tracking as lossless, but in reality the associated con-
vergence basins are somewhat rough. So any spatial
smoothing softens them. This explains why the khaki
curve (N = 56 with a pixel of 4 and a convolution of
[4×4]) passes over the green.

The case ”RandVor” is a little benchmark. Pre-
sumably, this random case is equivalent or better than
the 2 regular cases, but it is only true on average.
Given the standard deviations it is the one that leads to
the most unpredictable trackings, which makes sense
after all.

The case ”KerOpt” is equivalent to the others in
terms of pure tracking. However, as the the number
of sample points (K = 5, 30 and 55) resulting of the
number of selected kernels by filtering (each probabil-
ity map X has provided a standard filter on UV RGB)
is reduced, performance can be judged superior. In
general, the loss of information due to filtering de-
grades the sharpness of comparison between ROIs, al-
though this lightens the appearance model. By choos-
ing some observations, representative of the remote
object and its environment, CMIM limits the dam-
age. The ROIs whose informations a priori from the
object (Y = 1) appear close to the reference emerge
with the k-NN. k-NN provide flexibility to the com-
parisons while kernels manage the diffusion of prob-
abilistic assumptions.

4 CONCLUSION

Our goal was to track a target with a low cost ap-
pearance model, i.e. based on few points. With ac-
cess to a clipping of the object of interest in the first
frame and based on notions of information theory, we
have shown how to build a light model made up of
independent and representative kernels of the prime
appearance. Trackings made with this filtering were
compared to other more traditional and showed equiv-
alent performance for a number of points lower.

However, despite this result, we are still far from
satisfied. Many things escape us and has to be im-
proved. Here’s a partial list: 1) integrate the tempo-
ral coherence in addition to the spatial coherence by
introducing explicit time T in a new representation,
for instance: UV RGBT , 2) make evolve the reference
ROI R along the tracking by an on-line learning of
new likely labels, 3) add new parameters to the trans-
formation ϕ to consider rotations or homotheties or
even why not see ϕ in a nonparametric way by con-

sidering each point of the model as a single control
point connected to other by a consistent deformable
mesh, 4) penalize the estimate of DKL according to
the degree of internal consistency of the transforma-
tions ϕ of the different pixels ranging from T to R via
their k-NN, 5) understand the mechanisms of associ-
ation of points and dimensions in order to ease the
weighting policies (soft vs hard clustering). All these
points seem difficult but not unattainable.
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Figure 7: ”WalkByShop1cor” sequence. Example of a ROI
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Tracking loss in image 295.
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Figure 8: Tracking performances η(τ) of the subsamplings
”Raw”, ”Gauss” and ”RandVor” for K = {775, 56, 20, 12}
points and ”KerOpt” for K = {55, 30, 5} points.
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