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Abstract: This paper shows how information theory can both drive the digital image inpainting process and the optical
illusion due to the blind spot. The defended position is that the missing information is padded by the “most
probable information around” via a simple filling-in scheme. Thus the proposed algorithm aims to keep the
entropy constant. It cares not to create too much novelty as well as not to destroy too much information.
For this, the image is broken down into regular squares in order to build a dictionary of unique words and to
estimate the entropy. Then the occluded region is completed, word by word and layer by layer, by picking
the element which respects the existing image, which minimizes the entropy deviation if there are several
candidates, and which limits its potential increase in the case where no compatible word exists and where a
new one must be introduced.

1 INTRODUCTION

The eye’s blind spot has been discovered in 1660 by
Edme Mariotte, a French physicist, whose experi-
ment seemed magical when it was first presented to
Louis XIV ’s court. Today, despite three-and-a-half
centuries of progress, this demonstration still resists
interpretation.

From the 19th century until now naturalists then
neuroscientists have remarkably well investigated the
visual system. However, despite tons of observations
they do not fully understand yet its functioning. Brain
modelling remains a real challenge.

On the other hand, the relatively recent commu-
nity of computer vision, clearly based on hard sci-
ence, has a lot to do to solve its own problems, e.g.
segmentation, 3D reconstruction or tracking. It looks
for good algorithms, not laws. As a result it has regu-
larly claimed that it has nothing to do with medicine,
perceived as too experimental.

Whatever these clichés, some pieces seem to
match. Image Inpainting experiments can precisely
simulate the illusion of the blind spot and more funda-
mentally Information Theory can simply explain the
principle underlying the phenomenon.

2 THE BLIND SPOT

2.1 Demonstration

Let us start by showing an experiment that ophtal-
mologists know well. Look at the top part (a) of
figure 1 with the big dot and the cross. Close your
right eye and force your left eye to stare at the cross
slightly sidelongly. Slowly move your head closer
to the screen. When the image of the dot hits your
blind spot it disappears. Note that as soon as you let
your left eye directly look at the dot it immediatly
reappears. Then use the same distance in case (b).
The hole of the horizontal line is now completed so
that it appears continuous. These two examples have
demonstrated the existence of your blind spot.

2.2 Partial explanation

Neuroscientists half understand the phenomenon.
They see why information is missing but not why it
is completed. As shown in figure 2 it occurs where
the optic nerve leaves the eye. The axons of the retinal
ganglion cells concentrate at one point and go through
the retina, preventing any presence of photoreceptors.
In human beings the blind spot is large, about 4o of
the view field. It is located at slightly different angles
in each eye, probably to facilitate their mutual filling.
Finally, some invertebrates like cephalopods do not



Figure 1: Two experiments that demonstrate the existence of the blind spot. To make the black dot in (a) or the white hole in
(b) disappear, close your right eye and force your left eye to look at the cross with a slight angle, then slowly move your head
back and forth at about 25 cm from the screen.

have a blind spot. Their nerve fibers route behind the
retina and do not block light.

Figure 2: In the eyes of the vertebrates, the nerve fibers
route before the retina, blocking some light and creating a
blind spot where the fibers pass through the retina and out
of the eye. (i) human retinography, (ii) diagram of human
eye, and (iii) photoreceptor density highlight the blind spot.

2.3 Emulation

We are almost always unaware of our natural blind
spots. So how are they naturally filled in? One radi-
cal solution would be to experiment with a conscious
patient full of instruments in his eye and his cortex.
To the best of our knowledge, this is not yet feasible.
Beyond ethics, there are still technical issues.

Other people have made the parallel with Image
Processing and tried to model the phenomenon in or-
der to emulate the filling-in process. That is the per-
spective we have adopted. But, from what we read,
and whatever the community, they have talked about
“visual interpolation” (Durgin, 1995) and have ap-
plied variational approaches (Liu et al., 2007) (Arias
et al., 2011) to constrained Partial Differential Equa-
tion (Satoh, 2011) (PDE) problems. We contest this
interpretation. Why? To make it short, simply be-
cause interpolation can fast create unexpected things,
i.e. disorder, in other words entropy. There is a sim-
ple test that illustrates it. Let us make again experi-
ment (b) with yellow and blue bars plus a red dot, now
called experiment (c) in figure 3. Let us see if green,
or any mix of the three primary colours, appears or
not.

Apparently not. For us this detail is quite mean-
ingful. Our rough guess is that when something is
missing, we do not really innovate, we keep the same
colours as well as the redundant patterns in presence.
In the following section this idea is reformulated

within the Information Theory framework. Based on
that principle we describe an inpainting algorithm
that aims to keep the entropy constant. It can not only
reproduce the blind spot experiments (a), (b) and
(c) but also complete any damaged image. We have
provided MATLAB implementations able to inpaint
binary, grayscale or RGB images of any bit depth at:
http://wwwlasmea.univ-bpclermont.fr/
Personnel/Jean-Marc.Berthomme/.

3 INFORMATION THEORY

3.1 Motivation

Information theory was born to statistically measure
the uncertainty in communications. In an era of
analogical technologies, Claude Shannon (Shannon,
1948) and his colleagues sought to reduce noise while
improving transfer rates. Their key observation was
that transmitting a noisy signal via a noisy chan-
nel still produces a noisy signal. The noisiest state,
later called maximum entropy, plays the role of a
fixed point. This led to the idea that uncertainty can
be bounded, by a maximum - when the signal has
reached the maximum measurable noise - and by a
minimum - when the signal is certain i.e. fully redun-
dant. Shannon proved that any signal X , whose dis-
tribution of the state is {pi}i, cannot be compressed
beyond H(X) =−∑i pi log2 pi.

John von Neumann related this to Boltzmann’s
works because the latter had described intensive val-
ues like temperature by an average number of colli-
sions - extensively countable in theory - between the
molecules of an ideal gas. Thus H function was then
called Shannon’s entropy. As 0 K means no collision,
0 bit means no information. Similarly H can only in-
crease when information is propagated.

But the theory does not stop here. As the uncer-
tainty of a signal can be measured, the uncertainty in-
troduced by the channel itself can be assessed. For
that, Shannon investigated the mutual information
I(X ;Y ), shared between the source signal X and its
copy Y . He showed that we cannot convey more in-
formation than the capacity C of the channel, defined
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(c)

Figure 3: Can green or any secondary colour turn up?

by C = max I(X ;Y ) with I(X ;Y ) = H(X)−H(X/Y ).
Lastly, we cannot determine if uncertainty - or infor-
mation - comes from the signal or the channel.

Information Theory drove to reconsider the ana-
logical signals in order to protect their information
from noise by sampling them under discrete form.
Paradoxically this quantization may involve a huge
loss of information. It also led to wonder how much
redundancy was necessary to recover corrupted com-
pressed signals with error-control coding. Today its
main consequence and success is the advent of our
digital era.

3.2 Maximum entropy

The main idea behind maximum entropy refers to the
question: “How many configurations are there?”. It
assumes that we are able to distinguish all of them
and that we assign an equal weight, a unit by default,
to each one. This implies that we work in a countable
world and that any continuous feature is translated un-
der a discrete shape. The normalization of this regular
counting always drives to a discrete uniform distribu-
tion.

By convention people have adopted base 2 be-
cause the simplest and most interesting system gets
only two observations for one state. Indeed its en-
tropy is: H = 1/2.log2(2)+1/2.log2(2) = log2(2) =
ln(2)/ln(2) = 1 bit, thanks to the use of log2. A good
interpretation of the maximum entropy - or maximum
of disorder - is to consider a state whose the obser-
vations - or micro-states - can all be there. So when
the system has N distinct equiprobable micro-states,
its entropy is: H = log2(N) as ∀i ∈ [1,N], pi = 1/N.
As soon as we leave this perfectly balanced state we
necessarily favour one micro-state instead of the oth-
ers. In other words it is going to be more ordered, so
the entropy is going to decrease. That is the physical
meaning of “Why is the maximum entropy a maxi-
mum?”. But to understand “Why does the uniform
distribution correspond to the maximum entropy?”
we must see the mathematical proof. We do not detail
it but it is a consequence of Jensen’s inequality ap-
plied to the convex function p logp. It is also deeply
linked to the central limit theorem.

There are several ways to sketch what is behind a
single bit. As drawn in figure 4 it can be an empty
piece of information with an equal chance to be one
label or another one, for instance 0 or 1. But it can
also be the result of a set of data whose distribution is
found to be 50% - 50% by chance.

? XOR 1 bit

Figure 4: Examples of systems whose entropy is 1 bit.

The number of micro-states is always related to
the encoding of the signal. For instance an image of
n binary pixels, labelled black or white, can gener-
ate 2n different images. So its maximum entropy is
log2(2n) = n bits. That may look like a tautology but
that is not always trivial. Indeed, as illustrated in fig-
ure 5, the way an image is broken down can highly
constrain the estimation of its entropy. The state as
well as the signal structure the volume of the obser-
vations. So, when talking about entropies, a good
practice is to mention what is counted and what the
maximum entropy reference value is.

4 ENTROPY INPAINTING

Inpainting is the process that replaces undesired in-
formation by contextual information without altering
the global consistency of the signal. It is not necessar-
ily restricted to image restoration as it can also apply
to sounds or videos. In all cases it relies on digital
signals.

4.1 Formulation

Inpainting should not make unexpected things arise
or disappear. So, in the Information Theory frame-
work, we state that: “Inpainting must neither create
nor destroy information“. By defining Xu, the un-
known part of an image, and Xk, its known part, the
ideal goal is to get: H(Xu,Xk) = H(Xk), which is
equivalent to (MacKay, 2003): H(Xu/Xk) = 0. Thus
the proposed algorithm aims to keep the entropy of
the growing known region constant. As long as there
are nu unknown bits there are 2nu possible subimages
so H(Xu) = nu bits. Concerning H(Xk) its estimation
requires to divide Xk into pieces in order to specify
a dictionary D and therefore propagate the filling-in
process. Anyway, inpainting can be reformulated as
an optimization problem looking for an unknown sig-
nal X∗u and an unknown dictionary D∗ so that:

minimize |HD(Xu,Xk)−HD(Xk)|
subject to Xk



Figure 5: Breaking down of a binary image of size 3x3 into blocks of 1x1, 1x3, 2x2 and 3x3 pixels. The different dictionaries
lead to different estimations of the image entropy. The maximum entropy of the image is either limited by the coding or by
the signal.

4.2 Building the dictionary &
Estimating the entropy

When the unwanted information is removed from the
damaged image the method first breaks down the re-
maining known region. The partition possibilities are
huge, from blocks of 1 x 1 pixels to the size of the
image itself. Whatever the choice, the goal is to fetch
the redundant patterns, so all the shapes are not rel-
evant. Note that 1 x 1 cutting makes an exception
because it loses the spatial consistency, so it is never
used. Similarly, a sliding windowing is applied to the
image in order not to miss any stitching between the
patches. Though precise, this exhaustive enumeration
is expensive. So, to shorten it, exclusive or even ran-
dom windowing strategies could be considered. As
shown in figure 5, the counting of the broken blocks
leads to the building of a dictionary D . It is composed
of unique words associated with their frequencies pi.
These latter allow to estimate the entropy H of the
image.

4.3 Filling in the selection

Based on such a dictionary, any missing pixel can be
replaced by looking for the patch - or the word fol-

lowing the point of view - that best fits the selection
around. Three cases can occur. There can be one, sev-
eral or no compatible words in the dictionary. Note
that the compatibility is checked on the known pixels
of the selection. It is calculated with the logic func-
tions NOT, XOR and AND as each piece of image is
stored as a set of Boolean. So, if there is only one
word, it is always taken. If there are several, the se-
lected one must minimize the absolute entropy devia-
tion. Finally, if no compatible word exists a new one
is created. It does not challenge the known part of the
selection. It only retains the consensus within the dic-
tionary concerning the unknown part. To conclude,
the whole process is summarized in algorithm 1 be-
low.

5 EXPERIMENTAL RESULTS

Our implementation has investigated dictionaries of
square patches. It can emulate the blind spot com-
pletion described in section 2 with an image of size
25x100 and patches of any size between 2x2 to 25x25
in this case. The results, grouped in figure 6 below,
correspond to a filling in with words of size 3x3.

We have also explored characteristic patterns like
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Figure 6: Entropy inpainting with 3x3 patches emulating the blind spot filling-in. (1) denotes the original images, (2) the
damaged images with the same gray cache, and (3) the final inpainted images. (a), (b) and (c) refer to the experiments
described in section 2.

input : unknown signal Xu and known signal
Xk such that Xu∩Xk =∅

output: Xu completed so that
HD(Xu,Xk)≈ HD(Xk)

build a dictionary D from Xk and calculate
H(Xu) and H(Xk);
while Xu is not completed do

define an overlapping layer L between Xu
and Xk;
while L is not completed do

define a selection S inside L ;
find the compatible words between S
and D;
if there is one candidate then

select this word;
else if there are several candidates then

select the word which minimizes
the absolute entropy deviation;

else // there is no candidate
create a new word compatible with
S and D;

end
fill in S with the returned word;
update Xu, Xk, D and recalculate H(Xu)
and H(Xk);

end
end
Algorithm 1: Entropy Inpainting Algorithm

crosses in order to see how to constrain the novelty
creation. This work has started with binary images
and was then extended to grayscale and RGB images
of any bit depth. Random images have equally pro-
cured a deep reflection. We first wanted to minimize
the entropy, not its absolute deviation. So we encoded
redundancy and thus destroyed information. As ran-
dom images are already at maximum entropy, regard-

less of their breaking down, we must maintain their
entropy constant to be able to reproduce their pattern.

Finally we have tried to inpaint natural im-
ages taken from the benchmark dataset proposed
by (Kawai et al., 2009) at: http://yokoya.naist.
jp/research/inpainting. Our RMSE values com-
pare the inpainted image to the original one within the
completed region only. They are not relevant to high-
light the image global consistency but they are good
to compare the inpainting methods. We readily ac-
knowledge that our implementation could highly be
improved compared to the others. Clearly we do not
manage edges and complex textures.

6 DISCUSSION

Beyond the slow speed of our algorithm, mainly due
to the lack of multithreading and code optimization,
our implementation most suffers from its dictionary.
It only checks the redundancy of square patches of
fixed size, which is strongly restricted. First, mul-
tiscale dictionaries can work like single scale ones.
Second, we can fix almost no constraint on the shape
of the words. The minimum constraint would be that
they must be a partition of the image. Indeed redun-
dant patterns can emerge at any scale and under any
shape. So we must look for another way to build a
good dictionary at a decent cost. Until now things
have been solved in a technical way by exploring the
use of edges (Liu et al., 2007) or gradients (Arias
et al., 2011) or by synthesizing random textures (Har-
rison, 2005). These methods are very efficient but we
wonder if a complete theoretical answer can be found.
If there is a finite number of partitions in an image -
although huge according to the Bell number - there
should be a finite number of possible fillings - even
huger. So among this heap of solutions one of them
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Figure 7: Entropy inpainting with 3x3 patches recovering characteristic patterns on binary, grayscale and RGB images. (1)
denotes the original images, (2) the damaged images with the gray cache, and (3) the final inpainted images. (d), (e) and (f)
cases are sensitive to the creation of information. (g), (h) and (i) cases are sensitive to the destruction of information.

should better respect the consistency of the image, i.e.
induce a lower entropy.

In another perspective it might be worth cluster-
ing the words of the dictionary. Although it might be
lossy this could avoid the dictionary dispersion and
speed up the process. Similarly, it would be inter-
esting to modulate the unknown/known pixels ratio
in the selection. Our completion was risk-averse and
slow but it could be tuned to risk-taking and be faster.

Concerning the compatibility between any word
W of the dictionary and the selection S the
criterion was hard with a formula looking like
AND(NOT(XOR(S ,W ))) and a result belonging to
{0;1}. We note that it could be soft based on
I(S ;W )/min(H(S),H(W )) and with a value in
[0,1].

About the inpainting formulation, we wonder
what links the energy to the entropy interpreta-
tion. For instance we think of the Lloyds’s algo-
rithm (Sabin and Gray, 1986), which makes any
Voronoi diagram tend towards a uniform tiling, and
where the two interpretations cohabit.

Finally, we remark that the sparsest dictionary
implies the lowest entropy and thus the fastest fill-
ing. There is obviously a resonance with convex opti-
mization (Boyd and Vandenberghe, 2004) like the ba-
sis pursuit. It solves: minimize ∑

m
i=1( f (ui)− yi)2 +

γ‖xi‖1, where γ > 0 is a parameter used to trade off
the quality of the fit to the data and the sparsity of the
coefficient vector. It is now well understood that, to
solve a number of problems, we both need to keep the
cost function convex, i.e. use lp-norms where 1 ≤ p,
and get a sparse solution, i.e. use penalty functions
with lp-norms where 0 < p ≤ 1. Inpainting based on
variational methods have almost always explored the

possibilities within this framework.

7 CONCLUSION

This paper has underscored the fact that Information
Theory can simply formulate the inpainting process
and precisely emulate the blind spot filling-in. It has
emphasized that the goal of inpainting is neither to
create nor to destroy information. Thus the inpaint-
ing process was reformulated within the Information
Theory framework under the form of an optimiza-
tion problem looking for both a dictionary and an un-
known signal. It aims to keep the entropy of the grow-
ing known signal constant. For that, an example of
entropy inpainting algorithm has been proposed.

The provided implementation has simulated the
described optical illusions due to the blind spot ex-
periments. It can equally inpaint binary, grayscale or
RGB images of any bit depth. However it is far for
being optimal. This is mainly due to the exclusive use
of fixed size square patches in the dictionary. This
can be greatly improved by removing almost all the
constraints on the shape of the words.

Last but not least, we are convinced that it is worth
modelling simple optical illusions to push the theory
to its limits and to better understand the perception
process. Many things remain unclear and there are
still a lot of things to do and to learn.
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